Website is intended for physicians
Search:
Всего найдено: 6

 

Abstract:

Aim: was to assess the frequency, predominant localization and severity of atherosclerotic plaques in coronary arteries according to multidetector computed tomography (MDCT) in patients with suspicion on coronary heart disease (CHD).

Materials and methods: analysis of results of CT of coronary arteries (CT-CA) was carried out in 1590 patients. The average age was 53,9 ± 10,7 years. The number of men was 1133 (71,3%). Studies were carried out on 64- and 256-slice CT scanners.

Results: in patients with suspicion on coronary artery disease, atherosclerotic lesions of coronary arteries (CA) were not detected in 582 (36,6%) cases. Minimal and initial CA stenoses were observed in 80 (5%) and 416 (26,2%) patients, respectively. Moderate CA stenoses were found in 236 (14,8%) patients. Severe coronary artery stenoses were detected in 183 patients (11,5%). CA occlusions were observed in 84 (5,3%) cases. Most often, the stenotic process was detected in proximal segments of coronary arteries, in particular, in the left anterior descending artery.

Conclusions: MDCT makes it possible to determine in detail the severity and nature of atherosclerotic coronary lesions, as well as to assess the predominant location of plaques.

 

References

1.     Барбараш Л.С. Двадцатипятилетний итог развития кардиологии Кузбасса. Актуал. пробл. кардиол. и серд-сосуд. хир. 2016; 1: 6-13.

Barbash LS. The twenty-five-year result of the development of cardiology in Kuzbass. Actual problems of cardiology and cardiovascular surgery. 2016; 1: 6-13 [In Russ].

2.     Benjamin EJ, Muntner P, Flonso F, еt al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019; 139: 526-528.

3.     Островский Ю.П. и др. Сердечная недостаточность. Минск: Белорусcкая наука. 2016; 503.

Ostrovskiy YuP et al. Heart failure. Minsk: Belarusian science. 2016; 503 [In Russ].

4.     Paech DC, Weston AR. A systematic review of the clinical effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronaryangiography in the investigation of suspected coronary artery disease. BMC Cardiovasc. Disord. 2011; 11: 32.

5.     Hell MM, Bittner D, Schuhbaeck A, et al. Prospectively ECG-triggered high-pitch coronary angiography with third-generation dual-source CT at 70 kVp tube voltage: feasibility, image quality, radiation dose, and effect of iterative reconstruction. J. Cardiovasc. Comput. Tomogr. 2014; 8(2); 418-425.

6.     Korean Guidelines for the Appropriate Use of Cardiac CT. Korean J. Radiol. 2015; 16(2): 251-285.

7.     Liang J, Wang H, Hu L, et al. Diagnostic performance of 256-row detector coronary CT angiography in patients with high heart rates within a single cardiac cycle: a preliminary study. Clinikal Radiology. 2017; 72(8): 694.e7-694.e14.

8.     Терновой С.К., Веселова Т.Н. Выявление нестабильных бляшек в коронарных артериях с помощью мультиспиральной компьютерной томографии. Russ. Electr. J. Radiol. 2014; 4(1): 7-13.

Ternovoy SK, Veselova TN. MDCT in detection of unstable coronary plaques. Russ. Electr. J. Radiol. 2014; 4(1): 7-13 [In Russ].

9.     Foldyna B, Szilveszter B, Scholtz JE, et al. CAD-RADS-A New Clinical Decision Support Tool for Coronary Computed Tomography Angiography. Eur Radiol. 2018; 28(4): 1365-1372.

10.   Maroules CD, Goerne H, Abbara S, Cury RC. Improving quality and communication in cardiac imaging: the coronary artery disease reporting and data system (CAD-RADS™). Curr Cardiovasc Imaging Rep. 2017; 10: 20.

11.   Ramanathan S, Al Heidous M, Alkuwari M. Coronary artery disease-reporting and data system (CAD-RADS): strengths and limitations. Clin Radiol. 2019; 74: 411-417.

12.   Basha MA, Aly SA, Ismail AA, et al. The validity and applicability of CAD-RADS in the management of patients with coronary artery disease. Insights Imaging. 2019; 10: 117.

13.   Manzke R, Grass M, Nielsen T, et al. Adaptive temporal resolution optimization in helical cardiac cone beam CT reconstruction. Med. Phys. 2003; 30: 3072-80.

14.   Lee JW, Kim JY, Han K, et al. Coronary CT Angiography CAD-RADS versus Coronary Artery Calcium Score in Patients with Acute Chest Pain. Radiology. 2021.

15.   Koulaouzidis G, Powell A, McArthur T, et al. Computed tomography coronary angiography as initial work-up for unstable angina pectoris. Eur J Gen Med. 2012; 9(2): 111-117.

16.   Groothuis JG, Beek AM, Brinckman SL, et al. Low to Intermediate Probability of Coronary Artery Disease: Comparison of Coronary CT Angiography with First-Pass MR Myocardial Perfusion Imaging. Radiology. 2010; 254(2): 384-392.

17.   Sultan OM, Hamed Al-obaidic LS, Abdulla DB, et al. Estimation of frequency and pretest probability of CAD in patients presenting with recent onset chest pain by multi-detector CT angiography. Egypt. J. Radiol. and Nucl Med. 2016; 47(1): 111-117.

18.   Wasilewski J, Niedziela J, Osadnik T, et al. Predominant location of coronary artery atherosclerosis in the left anterior descending artery. The impact of septal perforators and the myocardial bridging effect. Kardiochirurgia i Torakochirurgia Polska. 2015; 12(4): 376-385.

Abstract

Aim: was to determine the role of radiation and interventional methods of diagnosis and treatment of traumatic pelvic bleeding.

Material and methods: for the period 2016 -2019, we analyzed results of diagnosis and treatment of 37 patients with pelvic injuries, complicated by intra-pelvic bleeding. CT scanning of retroperitoneal pelvic hematoma (RPH) was performed in all cases, results of calculations were compared with the surgical classification of I.Z. Kozlova (1988) on the spread of retroperitoneal hemorrhage and volume of blood loss in pelvic fractures. MSCT-A was performed in 16 (45%) injured. Digital subtraction angiography (DSA) was performed in 10 (27%) cases, of which after MSCT-A – in 4 cases, and as the primary method for the diagnosis of arterial bleeding – in 6 cases.

Results: according to MSCT, the frequency of minor hemorrhages was 18 (50%), medium 16 (43%), large 3 (8%). CT calculation of the volume of small hemorrhages ranged from 92 to 541 cm3, medium – 477-1147 cm3, large –1534 cm3 and more. MSCT-A revealed signs of damage of arteries of the pelvic cavity: extravasation of contrast medium – in 4, cliff and «stop-contrast» – in 1, post-traumatic false aneurysm – in 1, displacement and compression of the vascular bundle – in 4 observations. DSA revealed signs of damage of vessels of the pelvis: extravasation of contrast medium – 3, angiospasm – 2 and occlusion – 2 observations. According to results of angiography, embolization of damaged arteries was performed in 5 observations.

Conclusion: MSCT is a highly sensitive method in assessing the distribution and calculation of RPH volume. The presence of a hematoma volume of more than 50-100 cm3, regardless of the type of pelvic damage, was an indication for MSCT. In patients with stable hemodynamics, DSA was used as a clarifying diagnostic method; in patients with unstable hemodynamics, it was used as the main method for diagnosis and treatment of injuries of pelvic vessels. Damage of pelvic vessels detected by angiography was observed predominantly in unstable pelvic fractures, accompanied by medium and large retroperitoneal pelvic hemorrhages.

  

References 

1.     Butovskij DI. The role of retroperitoneal hematomas in thanatogenesis in pelvic injuries. Sudmedekspert. 2003; 4: 14-16 [In Russ].

2.     Smolyar AN. Retroperitoneal hemorrhage in pelvic fractures. Hirurgiya. 2009; 8: 48-51 [In Russ].

3.     Fengbiao Wang, Fang Wang. The diagnosis and treatment of traumatic retroperitoneal hematoma. Pakistan Journal of Medical Sciences. 2013 Apr; 29(2): 573-576.

4.     Dorovskih GN. Radiation diagnosis of pelvic fractures, complicated by damage of pelvic organs. Radiologiya-praktika. 2013; 2: 4-15 [In Russ].

5.     Vasil'ev AV, Balickaya NV. Radiation diagnosis of pelvic injuries resulting traffic accidents. Medicinskaya vizualizaciya. 2012; 3: 135-138 [In Russ].

6.     Mahmoud Hussami, Silke Grabherr, Reto A Meuli, Sabine Schmidt. Severe pelvic injury: vascular lesions detected by ante- and post-mortem contrast mediumenhanced CT and associations with pelvic fractures. International Journal of Legal Medicine. 2017; 131: 731-738.

  

Abstract:

Aim: was to analyze own experience of differential diagnostics of cardiac tumors by using cardiac CT.

Materials and methods: 354 cardiac CT were made in «Fedorovich Klinikasi» in 2011-2017. The age of patients ranged from 5 month to 69 years (mean 27,2). There were 200(56,5%) men and 154 (43.5%) women. The study was carried out on MDCT scanners Brilliance 64 and Brilliance i-CT 256 (PHILIPS). Iodine containing contrast agent «Unihexol 350» was injected intravenously by means of «Ulrich» automatic injector.

Results: primary benign cardiac masses were detected in 10(2,8%) cases. Most of them were myxomas - 6 cases (60%), located in the left atrial cavity in 2 cases, in the mitral valve region - in 1, in the right atrium - in 2, and in the right ventricle - in 1case. Cardiac lipomas were detected in 2 (20%) patients. Papillary fibroelastoma of the aortic valve (1 case) and rhabdomyoma of the right

ventricle (1 case) also occurred in our study Intracardiac spreading of malignant neoplasms was noted in 5(1,4%) patients. Thrombosis of cardiac chambers was found in 7(2%) patients.

Conclusion: cardiac CT provides useful anatomical and functional information in evaluating cardiac masses, providing an accurate picture of the disease, allowing to assess localization and structure of the tumor, the condition of the tumor-free heart chambers, mediastinum, and lungs.

 

References

1.      Yuan SM, Shinfeld A, Lavee J, Kuperstein R, Haizler R, Raanani E. Imaging morphology of cardiac tumors. Cardiology Journal. 2009; 16 (1): 26-35.

2.      Puchkova EN, Sibirskiy VY Goncharova MA, Gajonova VE. Imaging diagnostics of the primary cardiac tumors. Kremlyovskaya meditsina. Klinicheskiyvestnik. 2009; 3: 7476 [In Russ].

3.      Colucci WS, Schoen FJ, Braunwald E. Primary tumors of the heart. 5th ed In: Brauwald E, editor., Heart Disease. A Textbook of Cardiovascular Medicine. Philadelphia, PA: WB Saunders; (1998). p. 1464-78.

4.      Roever L, Dourado PM, Resende ES, Chagas AC. Cardiac Tumors: A Brief Commentary Front Public Health. 2014; 2:264.

5.      Konradi YV, Ryzhkova DV. Imaging diagnostics of cardiac tumors. Translyatsionnaya meditsina. 2015; 2(4): 28-40 [In Russ].

6.      Kassop D, Donovan MS, Cheezum MK, Nguyen BT, Gambill NB, Blankstein R, Villines TC. Cardiac Masses on Cardiac CT: A Review. Curr Cardiovasc Imaging Rep. 2014; 7:9281

7.      Angulo CD, Diaz CM, Garcia ER, Fernandez RS, Siso AR, Diaz MM. Imaging findings in cardiac masses (Part I): Study protocol and benign tumors. Radiologia. 2015; 57(6):480-488.

8.      Grebenc ML, Rosado-De-Christenson ML, Green CE, et al. Cardiac myxoma: imaging features in 83 patients. Radiographics. 2002; 22: 673-89.

9.      Yu K, LiuY Wang H, Hu Sh, Long C. Epidemiological and pathological characteristics of cardiac tumors: a clinical study of 242 cases. Interactive Cardio Vascular and Thoracic Surgery. 2007; 6: 636-639.

10.    Butany J, Nair V, Naseemuddin A, Nair G, Catton C, Yau T. Cardiac tumors: diagnosis and management. Lancet Oncol. 2005; 6:219-228.

11.    Cheezum MK, Jezior MR, Carbonaro S, Villines TC. Lipomatous hypertrophy presenting as superior vena cava syndrome. J Cardiovasc Comput Tomogr. 2014.

12.    Howard RA, Aldea GS, Shapira O.M, et al. Papillary fibroelastoma: Increasing recognition of a surgical disease. Ann Thorac Surg. 1999;68:1881-5.

13.    Ghadimi Mahani M, Lu JC, Rigsby CK, Krishnamurthy R, Dorfman AL, Agarwal PP. MRI of pediatric cardiac masses. AJR Am J Roentgenol. 2014;202:971-81.

14.    Bussani R, De-Giorgio F, Abbate A, Silvestri F. Cardiac metastases. J Clin Pathol 2007; 60:27-34.

15.    Goldberg AD, Blankstein R, Padera RF Tumors metastatic to the heart. Circulation. 2013; 128: 1790-4.

16.    Kim DH, Choi S, Choi JA, Chang JH, Choi DJ, Lim C. Various findings of cardiac thrombi on MDCT and MRI. J Comput Assist Tomogr. 2006;30:572-577.

17.    Scheffel H., Baumueller S., Stolzmann P., et al. Atrial myxomas and thrombi: comparison of imaging features on CT. Am J Roentgenol. 2009;192: 639-45.

 

Abstract:

In this study the potentialities of quantitative computed tomography (QCT) in bone densitometry is reported. QCT was performed in patients receiving glucocorticoid therapy and in postmenopausal women (55 patients all in all). Special software was used for the mineral density loss assessment: surrounding tissues were automatically subtracted, and calculating of the vertebral body density done in cross-sectional view. QCT allows specifying pathological changes in any vertebral structures and so serves as a good contribution to the diagnosis of osteoporosis. 

 

 

Reference

 

1.     Иванов Е.Г. Диагностика и лечение остеопороза. AW.J. Med. 2001; 90: 170-210.

2.     Насонов Е.Л., Скрипникова И.А., Насонова В.А. Проблема остеопороза в ревматологии. М.: Стин. 1997.

 

3.     Andresen R., Haidekker M. A., Radmer S.,Banzer D. CT determination of bone mineraldensity and structural investigations on the axial skeleton for estimating the osteoporosis-related fracture risk by means of a risk score. Br.J. Radiol. 1999; 72 (858): 569-578.

 

 

4.     Genant H. K., Guglielmi G., Jergas M. et al. Bone Densitometry and Osteoporosis. Springer. 1998; 604.

 

5.     Белосельский Н. Н. Рентгеновская морфометрия позвоночника в диагностике остеопороза. Остеопороз и остеопатии. 2000.

6.     Скрипникова И.А. Профилактика и лечение остеопороза. Материалы итоговойконференции по остеопорозу. Амстердам.1996.

7.     Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Am. J. Med. 1993; 94: 646-650.

8.     Древаль А.В., Марченкова Л.Д., Мылов Н.М. Сравнительная информативность денситометрии осевого и периферического скелета и рентгенографии в диагностике постменопаузального остеопороза. Остеопороз и остеопатии. 1998; 2: 48-53.

9.     Оценка риска переломов и ее применение для скрининга постменопаузального остеопороза. Доклад Рабочей группы ВОЗ. Женева. 1994; 184.

10.   Benitez С. L., Schneider D. L., Barrett-Connor E., Sartoris D. J. Hand ultrasound for osteoporosis screening in postmenopausal women. Osteoporos. Int. 2000; 11 (3): 203-210.

11.   Krane St. M. Assessment of mineral and matrix turnover. In: B. Frame, J.T. Potts et al. Clinical disorders of bone and mineral metabolism. Excerpta medica. Internat. Congress Series 617. Amsterdam. Oxford, Princeton. 1983; 95-98.

Abstract: 

Aim: was to give a literature review normal coronary anatomy, described patterns of anomalous coronary arteries by using multislice computed tomography (MSCT).

Materials and methods: 1104 computed tomography coronary angiography (CCTA) was made in «Fedorovich Clinikasi» for the period of 2011-2016. The age of patients ranged from 7 to 82 years. Men were 790 (71.5%), women - 314 (28.5%). The study was carried out on the multislice spiral CT scanners Brilliance 64 and Brilliance i-CT 256 (PHILIPS).

Results. In 32 (2,9%) cases we detected anatomical variations as conus artery high take-off of a coronary ostium, myocardial bridging, shepherd's crook deformation of right coronary artery 23 (2%) patients had coronary artery anomaly (CAA) as a single coronary artery, absence of circumflex artery, hypoplasia of coronary artery, intra-atrial location, origin from the opposite coronary sinus of Valsalva, separate discharge of the LAD and circumflex from aorta, Blunt-White-Garland syndrome, coronary fistulas, aneurysms of coronary arteries. When a CAA is found, the exact origin, course and its position with other cardiac structures must be described in detail.   

 

References

            1.    Belozerov Yu.M. Detskaya kardiologiya [Pediatric cardiology]. MEDpress-inform. 2004; 600 [In Russ].

2.    Villa A., Sammut E., Nair A., Rajani R., Bonamini R. and Chiribiri A. Coronary artery anomalies overview: The normal and the abnormal. World J Radiol. 2016; 8(6): 537-555.

3.    Braat H.J.M. A coronary anomaly. Neth. Heart J. 2007; 15:267-268.

4.    Loukas M., Groat C., Khangura R. et al. The normal and abnormal anatomy of the coronary arteries. Clin. Anat. 2009; 22:114-128.

5.    Cheitlin, Mac Gregor J. Congenital Anomalies of coronary arteries: role in the pathogenesis of sudden cardiac death. Herz. 2009; 34:268-279.

6.    Ferreira M., Santos-Silva PR., de Abreu L.C. et al. Sudden cardiac death athlets: a systematic review. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2010; 2:19.

7.    Frommelt PC. Congenital coronary artery abnormal ities predisposing to sudden cardiac death. Pacing Clin. Electrophysiol. 2009; 32 63-66.

8.    Tseluyko V.I., Mishuk N.E., Kinoshenko K.Yu. Anomalii stroeniya koronarnyh arteriy. [Coronary artery anomalies]. Diabet i serdtse. 2012; 10(166):44-51 [In Russ].

9.    Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007; 115:1296-1305.

10.  Angelini P. Coronary Artery Anomalies - Current Clinical Issues. Definitions, Classification, Incidence, Clinical Relevance and Treatment Guiedlines. Tex. Heart Inst. J. 2002; 29:271-278.

11.  Chiu I.S., Anderson R.H. Can we better understand the known variations in coronary arterial anatomy? Ann Thorac Surg. 2012; 94:1751-1760.

12.  Vatutin N.T., Bahteeva T.D., Kalinkina N.V., Perueva I.A. Vrojdennye anomalii koronarnyh arteriy. [Congenital anomalies of coronary arteries]. Serdtse isosudy. 2011; 3: 94-99 [In Russ].

13.  Hlavacek A., Loukas M., Spicer D. et al. Anomalous origin and course of the coronary arteries. Cardiol. Young. 2010; Vol.3:20-25.

14.  Rigatelli G., Docali G., Rossi P. et al. Validation of a clinical-significance-based classification of coronary artery anomalies. Angiology. 2005; 56:25-34.

15.  Joshi S.D., Joshi S.S., Anthavale SA. Origins of the coronary arteries and their significance. Clinics (Sao Paulo). 2010; 65:79-84.

16.  Young P.M., Gerber T.C., Williamson E.E., Julsrud P.R., Herfkens R.J. Cardiac imaging: Part 2, normal, variant, and anomalous configurations of the coronary vasculature. AJR Am J Roentgenol. 2011; 197:816-826.

17.  Fujibayashi, Daisuke, Morino, Yoshihiro. A case of acute myocardial infarction due to coronary spasm in the myocardial bridge. J. Invasive Cardiol. 2008; 20: 217-219. 18.Morales A.R., Romanelli R., Tate L.G., Boucek R.J., de Marchena E. Intramural left anterior descending coronary artery: significance of the depth of the muscular tunnel. Hum Pathol. 1993; 24:693-701.

19.  Roberts W.C. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986; 11:941-963.

20.  Yurtda§ M., Gulen O. Anomalous origin of the right coronary artery from the left anterior descending artery: review of the literature. Cardiol J. 2012;19:122-129.

21.  Kuhn A., Kasnar-Samprec J., Schreiber C. Anomalous origin of the right coronary artery from pulmonary artery. Int. J. Cardiol. 2010; 39: 27-28.

 

 

Abstract:

Aim: was to increase diagnostic value of cardiac CTA (CCTA) by estimation of the CCTA informative value in CA (Coronary arteries) diseases and optimization of OOTA procedure for reducing of radiation dose (RD).

Materials and methods: CCTA informative value in CA diseases was assessed on the base of data of 200 patients (average age of patients was 60,4 (from 35 to 80 years), men/women ratio: 1.94:1(132/68). Parameters of coronary stenosis severities: its localization, extension, degree and characteristics of coronary stenosis. The study was performed with GE Optima 660 128-slice scanner and Missouri Ulrich injector with bolus injecting 60-100 ml of nonionic contrast media (350 mg/ml) at 4-6 ml/sec injector rate. For data processing used: «Auto Coronary Analysis» and «Auto Ejection Fraction» programs at - AW5 workstation.

Results: discovered various severity degrees of atherosclerotic lesions based stenosis intensity up to 50% (46 /23,5%), 50-60% (65/33%), 60-70% (35/17,9%), 70-80% (26/13,5%), 80% and more (23/11,8%). CCTA data coincided with conventional coronary angiography in 89% cases. RD decreasment was achieved by: pitch change depending on heart rate, scan area optimization (reduction), kV and mAc with radiation exposure decline in CCTA to 7,0-8,0 mSv In pitch value increasing to 1,48 - RD decreased to 45% (20 mSv). In prospective synchronization with ECG, RD decreased to 65% (7-12 mSv) as X-Ray tube radiates the highest RD at 70% cardiac cycle phase (120kV/180-200mAc), in other phases (80kV/100 mAc) RD values were lower.

Conclusion: CCTA is a valid non-invasive method in CA pathology diagnostics enabling accurate identification of stenosis location, extent, degree and characteristics. Scanning protocol individualization in CCTA enables significant reduce of RD.

 

References

1.     Kurbanov R.D., Urinov O. Profilaktika osnovnyh faktorov riska osnova snizheniya smertnosti ot serdechnososudistyh zabolevanij. [Prophylaxis of major risk factors-basis of reduction of mortality caused by cardiovascular diseases.] Zdravoohranenie Uzbekistana. 2011; 41, 1-2. [In Russ].

2.     Boguneckiy A.A. Vozmozhnosti magnitno-rezonansnoj tomografii serdca s kontrastnym usileniem v prognozirovanii posleoperacionnoj dinamiki u pacientov s ishemicheskoj bolezn'yu serdca. [Possibilities of cardiac MRI with contrast enhancement in prognosis of post-surgical dynamics in patients with ischemic cardiovascular disease.] Rossiyskiy elektronnyiy zhurnal luchevoy diagnostiki. 2012; 85-86. [In Russ].

3.     Multi-slice and Dual-source CT in Cardiac Imaging. Eds. Ohnesorge B.M., Flohr T.G., Becker C.R. Berlin: Springer. 2006; 359 p.

4.     Fedotenkov I.S., Veselova T.N., Ternovoy S.K., Sinitsyn V.E. Rol' mul'tispiral'noj komp'yuternoj tomografii v diagnostike kal'cinoza koronarnyh arterij. [The role of multispiral computed tomography in the diagnosis of coronary artery calcification.] Cardiologicheskiy vestnik. 2007; II (XIV): 45-48.

5.     Shevchenko I.I. Sravnenie dannyh registrov ostryh koronarnyh sindromov REKORD i REKORD-2: lechenie i ego iskhody v stacionarah, ne imeyushchih vozmozhnosti vypolneniya invazivnyh koronarnyh procedur. [Comparison of the RECORD and RECORD-2 registers data of the acute coronary syndrome: treatment and it’s result in hospitals without ability to carry out invasive manipulations.] Kardiologiya. 2013; 8: 4-10. [In Russ].

6.     Oganov R.G., Pozdnyakov Ju.M., Volkov B.C. Ishemicheskaya bolezn' serdca. [Ischemic heart disease.] M.: Izdatel'skiy Dom Sinergiya, 2002; 308 p. [In Russ].

7.     Ternovoy S.K., Nikonova M.E., Akchurin R.S. et al. Vozmozhnosti mul'tispiral'noj komp'yuternoj tomografii (MSKT) v ocenke koronarnogo rusla i ventrikulografii v sravnenii s intervencionnoj koronaroventrikulografiej. [Possibilities of multispiral computed tomography (MSCT) in assessing of coronary vessels and ventriculography in comparison with interventional coronaroventriculography.] Russian electronic journal of radiation diagnostics. 2013; 3(9): 28-36 [In Russ].

8.     Sinitsyn V.E., Ustjuzhanin D.V. Mul'tispiral'naya komp'yuternaya tomografiya: issledovanie koronarnyh arterij. [Multislice computer tomography: examination of coronary arteries.] Bolezni serdtsa i sosudov. 2006; 1: 20-24. [In Russ].

9.     Coronary Radiology, 2nd edition. Eds. Oudkerk M., Reiser M.F. Berlin: Springer. 2009; 349 p.

10.   Einstein A.J., Elliston C.D., Arai A.E., Chen M.Y. Mather R., Pearson G.D., Delapaz R.L., Nickoloff E., Dutta A., Brenner D.J. Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology. 2010; 254: 698-706.

11.   Vardikov D.F., Yakovleva E.K., Maystrenko D.N. Analiz densitometricheskih pokazatelej koronarnogo rusla pri stenoziruyushchih porazheniyah koronarnyh arterij i posle procedury stentirovaniya metodom ob'emnoj MSKT- koronarografii. [Analysis of densitometric parameters of coronary artery stenosis and after the stenting procedure with the method of volume MDCT coronary angiography.] Luchevaya diagnostika i terapiya. 2015; 3: 53-56. [In Russ].


 

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы